Sensitive Functions and Approximate Problems
نویسندگان
چکیده
منابع مشابه
Sensitive Functions and Approximate Problems
We investigate properties offunctions that are good measures of the CRCW PRAM complexity of computing them. While the block sensitivity is known to be a good measure of the CREW PRAM complexity, no such measure is known for CRCW PRAMs. We show that the complexity of computing a function is related to its everywhere ·sepsitivity, introduced by 'Vishkin and Wigderson. Specijically we show thatthe...
متن کاملsemi-analytical solution for static and forced vibration problems of laminated beams through smooth fundamental functions method
در این پایان نامه روش جدیدی مبتنی بر روش حل معادلات دیفرانسیل پارهای بر اساس روش توابع پایه برای حل مسایل ارتعاش اجباری واستاتیک تیرها و صفحات لایه ای ارایه شده است که می توان تفاوت این روش با روش های متداول توابع پایه را در استفاده از توابع هموار در ارضاء معادلات حاکم و شرایط مرزی دانست. در روش ارایه شده در این پایاننامه از معادله تعادل به عنوان معادله حاکم بر رفتار سیستم استفاده شده است که مو...
15 صفحه اولDecomposing Inventory Routing Problems with Approximate Value Functions
We present a time decomposition for inventory routing problems. The methodology is based on valuing inventory with a concave piecewise linear function and then combining solutions to single-period subproblems using dynamic programming techniques. Computational experiments show that the resulting value function accurately captures the inventory’s value, and solving the multi-period problem as a ...
متن کاملClassiiers That Approximate Functions Classiiers That Approximate Functions
A classiier system, XCSF, is introduced in which the prediction estimation mechanism is used to learn approximations to functions. The addition of weight vectors to the classiiers allows piecewise-linear approximation, where the classiier's prediction is calculated instead of being a xed scalar. The weight vector and the classiier's condition co-adapt. Results on functions of up to six dimensio...
متن کاملRisk-sensitive loss functions for sparse multi-category classification problems
In this paper, we propose two risk sensitive loss functions to solve the multicategory classification problems where the number of training samples is small and/or there is a high imbalance in the number of samples per class. Such problems are common in the bio-informatics/medical diagnosis areas. The most commonly used loss functions in the literature do not perform well in these problems as t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 1996
ISSN: 0890-5401
DOI: 10.1006/inco.1996.0043